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The dynamics of a closed lipid bilayer membrane (a vesicle) in a linear viscous flow
is investigated. The model accounts for the transport of lipids along each monolayer
and intermonolayer friction, as well as the membrane fluidity, incompressibility and
resistance to bending. Assuming a nearly spherical vesicle, the leading order analysis
results in a nonlinear coupled system of equations for the dynamics of the shape
and the bilayer density difference. Multiple solution states are found as a function of
viscosity ratio and the monolayer slip coefficient. The dynamics and stability of these
solutions is discussed.

1. Introduction
Phospholipid bilayer membranes are a key component of biological cells (Alberts

2002). Vesicles, which are bags made of such bilayers, play a vital role in physiological
processes such as synaptic transmission and intracellular trafficking. Vesicles also find
biomedical applications as vectors for drug and gene delivery (Allen & Cullis 2004).
In vitro produced vesicles mimic a variety of cellular phenomena and hence vesicles
are widely employed as a simple cell model (Abkarian & Viallat 2008). For example,
a giant vesicle exhibits the essential characteristics of the red blood cell such as its
equilibrium biconcave shape (Seifert 1997), and its non-equilibrium behaviour, e.g.
tumbling under flow (Kantsler & Steinberg 2006).

The physical properties of lipid bilayers and equilibrium vesicle configurations have
been extensively studied (Seifert 1997). Lipid molecules self-assemble into membranes,
which consist of two lipid monolayers. Lipid bilayers spontaneously close to avoid
exposure of their hydrophobic core to water, and form vesicles. Vesicle conformations
are governed by curvature energy (Lipowsky 1991), unlike drops whose shape is
controlled by surface tension and capsules, whose polymerized membranes are solid
elastic (Barthes-Biesel & Rallison 1981; Barthes-Biesel 1991; Pozrikidis 2003). The
simplest physical model proposed by Helfrich (1973) treats the bilayer as a two-
dimensional surface and the total bending energy of a vesicle is

F =
κ

2

∫
(2H )2dA, (1.1)
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where κ is the bending modulus and H is the mean curvature. Phospholipid
membranes are remarkably soft, because the energy required for bending is
comparable to the thermal energy; bending rigidity is κ ∼ 20kBT (Dimova et al.
2006). At physiological temperatures, lipid molecules are free to move within the
monolayer, and therefore, in contrast to solid-like polymerized membranes, the lipid
bilayer membrane is fluid with a zero shear-elastic modulus. Owing to its simplicity,
the minimal model given by (1.1) has been widely employed in studies of equilibrium
vesicle dynamics, i.e. membrane fluctuations around locally stable shape (Milner &
Safran 1987; Brown 2008), as well as non-equilibrium dynamics such as vesicles in
flow (Seifert 1999; Misbah 2006; Danker, Vlahovska & Misbah 2009). These works
account for the fixed number of lipids in the membrane by enforcing that the interface
is area incompressible. Accordingly, a tension field is introduced, which has to be
determined self-consistently with deformation. The leading-order analysis for a nearly
spherical vesicle in shear flow has shown that the dynamics is nonlinear due to the
shape-dependant tension (Seifert 1999; Olla 2000; Misbah 2006; Vlahovska & Gracia
2007). The shape evolution is described by a set of coupled quadratic equations which
predict tank treading, where the vesicle deforms into a prolate ellipsoid inclined at a
stationary angle close to π/4 with respect to the flow direction, or tumbling dynamics,
where the vesicle undergoes a periodic flipping motion. The theory agrees well
with experiments (Kantsler & Steinberg 2005, 2006; Mader et al. 2006; Deschamps,
Kantsler & Steinberg 2009), reviewed in Abkarian & Viallat (2008). Interestingly,
according to the leading-order theory, the tank treading to tumbling transition is
controlled by the viscosity ratio and it is independent of the shear rate. The effect of
shear rate enters at next order (Danker et al. 2007; Lebedev, Turitsyn & Vergeles 2008).

The minimal model captures the vesicle physics only to a limited extent because it
neglects the bilayer architecture of the membrane. For example, the predicted phase
diagram of equilibrium shapes is incomplete (Seifert 1997). A more realistic approach
for planar membranes, which we employ here, treats the membrane as being composed
of two slightly coupled monolayers and was proposed by Seifert & Langer (1993).
Their formulation is at the heart of the area-difference-elasticity model, which has
successfully explained the variety of static vesicle shapes (Seifert, Berndl & Lipowsky
1991; Dobereiner et al. 1997). Bending the bilayer membrane leads to compression
and stretching of the monolayers. The resulting density inhomogeneities relax by lipid
flow within the monolayers; note that lipids can not transport between the monolayers
due to the high energy cost for such ‘flip–flop’. In addition, the weak non-covalent
bonds between the two monolayers allow the two monolayers to slide over each other
(Evans et al. 1992). The lipid redistribution and intermonolayer friction modify the
membrane dynamics and give rise to a new mode in the equilibrium fluctuations of
a planar lipid membrane, in addition to the bending mode predicted by the minimal
model (Seifert & Langer 1993). Non-planar shapes have also been analysed, such as
a sphere (Miao, Lomholt & Kleis 2002) and a tube (Goldstein et al. 1996). However,
the effects of lipid dynamics on the overall vesicle non-equilibrium behaviour have
not been addressed so far.

The goal of this paper is to develop a theory for the vesicle dynamics which uses
the more natural language of lipid density fields instead of tension. Thus, effects
of lipid density variations and bilayer slip can be explored. We generalize work by
Miao et al. (2002) on equilibrium dynamics of a quasi-spherical vesicle to include a
viscosity contrast and an imposed linear flow. The lipid conservation is enforced and
the constraint on total lipid number is compared to the area constraint used by the
approaches based on the minimal model.
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Figure 1. (a) Structure of a lipid membrane formed by two identical monolayers. At the
monolayer’s neutral surface, bending and stretching are decoupled. For a symmetric bilayer,
the monolayers neutral surfaces are distance 2d apart. (b) Sketch of a vesicle in a simple shear
flow.

2. Problem formulation
Let us consider a neutrally buoyant vesicle suspended in a fluid of viscosity μout and

filled with a fluid of viscosity μin . Both interior and exterior fluids are incompressible
and Newtonian. The vesicle is placed in a simple shear flow, which in a Cartesian
coordinate system centred in the vesicle is given by v∞(r) = γ̇ E · r . The velocity
gradient tensor is Eij = δ1

i δ
2
j and the strain rate γ̇ is assumed to be constant; δ

j
i is the

Kronecker delta function. A sketch of the problem is shown in figure 1(b).
Our aim is to obtain the flow about the vesicle and the evolution of the vesicle shape.

At the length scale of a micron-size vesicle low-Reynolds-number (creeping flow)
conditions prevail. Accordingly, fluid motion is described by the Stokes equations,

μ(a)∇2v(a) − ∇p(a) = 0, ∇ · v(a) = 0; (a) = in, out, (2.1)

where p(a) is the pressure and v(a) denotes the fluid velocity. Note that superscripts are
used to distinguish variables inside and outside the vesicle. Far away from the vesicle,
the flow tends to the unperturbed external flow vout → v∞. The boundary conditions
are nontrivial, as the interior and suspending fluids are separated by a bilayer
membrane composed of two monolayers (see figure 1(a)). The outer monolayer, which
faces the suspending fluid, contains N+ lipids, while the inner monolayer contains N−

lipids. The local surface number density of lipids defined on a monolayer’s neutral
surface is ρ̃±. The focus of our study is on giant vesicles (∼ 10 μm or larger), and
therefore the molecularly thin membrane can be approximated as a two-dimensional
surface embedded in three-dimensional space. The vesicle boundary is defined by the
bilayer midplane, which is located at a half-distance d between the monolayer neutral
surfaces. The vesicle shape is then specified by the position of the bilayer midplane
R(u1, u2, t), where (u1, u2) are surface coordinates. The vesicle’s characteristic size
is defined by the radius of a sphere of the same volume R0. The membrane is
impermeable and hence the velocity normal to the membrane is continuous. However
intermonolayer friction gives rise to a tangential slip. Across the boundary, the
hydrodynamic stresses undergo a jump, which is balanced by membrane surface
forces. In the remainder of this section we discuss the membrane tractions and the
evolution equations of shape and lipid distribution.
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2.1. Thermodynamic free energy of a bilayer membrane

Here we summarize the model formulated by Seifert & Langer (1993). The free energy
density on the bilayer midplane surface is

dF
dA

=
κ

2
(2H )2 +

KA

2

[
(φ+ − 2dH )2 + (φ− + 2dH )2

]
+ σ , (2.2)

where κ is the bilayer bending rigidity, KA is the monolayer compressibility modulus,
H is the mean curvature and σ is the membrane tension. Contributions that integrate
to constants are neglected. The monolayer lipid densities are projected onto the
bilayer midplane using the parallel surfaces approximation. At leading order in
dH , ρ̃± = ρ±(1 ∓ dH ). It is convenient to introduce φ± as ρ± = ρ0(1 + φ±) with
ρ0 = (ρ+ +ρ−)/2, where at equilibrium ρ± = ρ

±
0 = N±/A0 and corresponds to the area

per lipid at equilibrium, in the absence of flow. Here A0 is the area of the surface
defined by the bilayer midplane.

The first term in (2.2) reflects the energy cost for bending of the bilayer. The second
term describes the free energy cost for creating inhomogeneous lipid distribution, in
other words the elastic energy density of each monolayer. The last term is the free
energy cost of changing the area of the vesicle at a constant lipid density with σ

acting as the effective membrane tension (Miao et al. 2002). The need for variable σ

will be highlighted in § 3.1. Rearranging the terms in (2.2) yields

F =

∫
dA

κeff

2
(2H )2+

∫
dA

KA

2

[
(φ+)2 + (φ−)2

]
+

∫
dAλH (φ+−φ−)+

∫
dAσ. (2.3)

The parameter κeff = κ +2d2KA is a renormalized bilayer bending rigidity. The elastic
terms have been expanded and grouped to give the third term which describes the
free energy cost associated with any coupling between changes in curvature and local
lipid densities, where λ= 2dKA (Seifert & Langer 1993; Miao et al. 2002).

2.2. Interfacial mechanics of a bilayer membrane

Here we outline the transport equations of lipid mass and momentum on the bilayer
midplane. Detailed discussion can be found in Edwards, Brenner & Wasan (1991),
Aris (1989), Stone (1990) and Cai & Lubensky (1995). Each lipid monolayer is
treated as a two-dimensional fluid with velocity v±. Since there is no exchange of
lipids between the monolayers, the total number of lipids in a monolayer is conserved

∂ρ±

∂t
+ ∇s · (ρ±v±

s ) + ρ±(∇s · n)(v± · n) = 0, (2.4)

where v± is the fluid velocity at each interface, v±
s = (I − nn) · v± is the velocity

component tangential to the surface, and ∇s is the surface gradient operator defined
as, ∇s =(I − nn) · ∇, where n is the local unit normal vector and I is the identity
matrix. Note that v± · n is continuous across the surface. Our concern is membrane
fluctuations with wavelengths comparable to that of the size of the vesicle, therefore
intrinsic dissipation within the monolayers is negligible and any diffusion flux can be
neglected (Yeung & Evans 1995).

The lipid membrane stores elastic energy in bending as well as compression or
stretching of the lipid monolayers. Dissipation is mainly due to two sources: bulk
fluid viscosity and intermonolayer friction. The momentum conservation reflects the
balance of dissipative and restoring forces. In the overdamped limit, it reduces to

t±
hd + t±

m + t±
rs = 0 , (2.5)
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where t±
hd are the tractions exerted on the monolayer surfaces by the bulk fluids, t±

rs

are mechanical restoring forces associated with the free energy of the system (2.3)
and t±

m are surface forces associated with dissipation in the membrane.
These three contributions will now be discussed in detail.

2.2.1. Membrane restoring (elastic) forces

The general form of the mechanical restoring forces t rs for a vesicle of an arbitrary
shape has been obtained by taking a variation of the free energy δF (Jenkins 1977;
Cai & Lubensky 1995; Miao et al. 2002):

t±
rs =

[
− κeff

[
H (2H 2 − 2K) + 	H

]
− π±(2H ) ∓ λ

×
(

1

2
	φ± + (2H 2 − K)φ± + 2H 2

)]
n − ∇sπ

± ∓ λ(1 + φ±)∇sH, (2.6)

where 	 is the Laplace–Beltrami operator. Both curvatures, mean, H = (c1+c2)/2, and
Gaussian, K = c1c2, appear as well as the new parameter π± = −σ/2+KAφ±+ KA

2
(φ±)2

which can be thought of as the monolayer surface pressures. The quantities c1 and c2

are the two principal curvatures.

2.2.2. Dissipative forces

The membrane viscosity of fluid lipid bilayers is relatively low, ∼ 10−9 Ns m−1

(Dimova et al. 2006), and its effects are usually negligible. Moreover, as discussed in
Yeung & Evans (1995) the drag between the monolayers scales as the inverse of the
membrane thickness and thus dominates over the surface viscous effects, which scale
with the membrane thickness. Therefore, effects of surface viscosity were neglected in
this study.

The intermonolayer friction is described by the following phenomenological relation
(Evans et al. 1992):

t±
m = ∓ b(v+

s − v−
s ) , (2.7)

where the parameter b is the slip coefficient. Its magnitude varies greatly depending
on the type of lipid; values of b have been reported from 104 to 109 Ns m−4 (Merkel,
Sackmann & Evans 1989; den Otter & Shkulipa 2007).

The bulk hydrodynamic stress is given by T (a) = −p(a)I + μ(a)
[
∇v(a) + (∇v(a))†],

where † denotes the transpose. The hydrodynamic forces per unit area on each
monolayer are then t+

hd = T out |r = R · n and t−
hd = −T in |r = R · n.

2.3. Solution outline

In summary, the Stokes’ equations (2.1) are solved in the interior and exterior of the
vesicle subject to the far field condition imposed by the external flow. The surface
velocity of the interface matches the velocity of the adjacent bulk fluid. The stress
conditions, (2.5), plus the transport equation of lipid density, (2.4), are applied on
each monolayer. Together these equations determine the dynamics of the interface
and the lipid density fields on each monolayer.

3. Solution for a nearly spherical vesicle
In this study, we focus on a vesicle with a shape close to a sphere. We non-

dimensionalize all variables using γ̇ −1 as the characteristic time scale and the effective
equilibrium radius R0 as a length scale. Accordingly, stresses are rescaled by μout γ̇
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and velocity by R0γ̇ . The non-dimensionsionalization gives rise to the following
dimensionless parameters,

Ca =
μoutR3

0 γ̇

κeff

, β =
bR4

0 γ̇

κeff

, η =
μin

μout
, α =

KAR2
0

κeff

, Λ =
λR0

κeff

. (3.1)

The capillary number Ca characterizes the strength of the imposed flow. The
parameter β is the dimensionless friction (slip) coefficient where large β implies large
friction between the monolayers, while small β corresponds to two freely slipping
monolayers. The rest of the parameters are flow–independent and related to the
physical properties of the system. For example, the dimensionless compressibility α

measures the monolayer’s ability to change local area; small α describes a compressible
monolayer.

Due to the symmetry, the spherical coordinate system (θ, φ, r), with basis vectors,
eθ , eφ and er , is the natural choice to describe the system. The three-dimensional
vector which represents the surface of the vesicle is written as

R(u1, u2, t) = R(θ, φ, t) = R(θ, φ, t)er = [1 + f (θ, φ, t)]er , (3.2)

where f (θ, φ, t) is a small perturbation from the spherical reference shape and
f ∼ ε � 1. The small parameter ε measures the deviations from sphericity. We will
assume that all velocities, shape variables f and density fields φ± are order ε terms.
Owing to the spherical symmetry, all perturbation fields are expanded in the basis of
spherical harmonics, Ylm (Morse & Feshbach 1953),

f (θ, φ, t) = ε
∑
l,m

flm(t)Ylm(θ, φ), (3.3)

φ	(θ, φ, t) = ε

[
φ	

0 +

(∑
l,m

ψ	
lm(t)Ylm(θ, φ) +

1√
4π

ψ	
00

)]
, (3.4)

φΣ (θ, φ, t) = ε

(∑
l,m

ψΣ
lm(t)Ylm(θ, φ) +

1√
4π

ψΣ
00

)
, (3.5)

where l takes values from 2 to ∞ and m between −l and l. The l = 1 modes are omitted
because they describe translation of the centre of mass. We have introduced the mean
density perturbation, φΣ = (φ+ + φ−)/2, and the density difference, φ	 = (φ+ − φ−)/2.
The quantity φΔ

0 characterizes the equilibrium density difference distribution on the
vesicle. Typically, φΔ

0 
= 0 as the vesicle formation process leads to different number
of lipids in the monolayers, i.e. N+ 
= N−. The global conservation of lipids on the
surface,

∫
(1 + φ±)dA= ρ−1

0 N±, shows that ψ
	/Σ

00 are O(ε); this relation serves to fix

ψ
	/Σ

00 in terms of lower order terms in ε.
The Stokes’ equations for flow past a vesicle are solved using the Lamb solution. All

quantities are expanded to first order in ε. The stress balance equations (A 1), (A 2)
and (A 3) are evaluated on a sphere. The kinematic condition and lipid conservation
yield the evolution equations for flm, ψ	

lm and ψΣ
lm. Details of the solution are given

in the Appendices A and B.

3.1. Conservation of lipids: elimination of the ψΣ
lm mode

The total number of lipids in each monolayer is constant. Examination of the three
characteristic membrane time scales in this problem corresponding to bending (tc),
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intermonolayer friction (tb) and monolayer compression (tKA
) shows that

tc =
μoutR3

0

κeff

∼ 10s , tb =
bR2

0

KA

∼ 1.6s , tKA
=

μoutR0

KA

∼ 3 × 10−7s , (3.6)

where μout = 0.001 N s m−2, R0 = 10−5 m, κeff =10−19 J, KA = 0.03 J m−2 and
b = 5 × 108 J s m−4 (Seifert & Langer 1993). This large separation of time scales
allows us to set (Goldstein et al. 1996; Miao et al. 2002)

dψΣ
lm

dt
= 0 . (3.7)

This condition is analogous to the ‘local area incompressibility’ constraint used in
previous work (Schneider, Jenkins & Webb 1984; Milner & Safran 1987; Seifert
1999; Vlahovska & Gracia 2007). It means that local changes in the average of
the projected densities relax faster than changes in shape or local density difference
(Goldstein et al. 1996). As pointed out in Miao et al. (2002) this constraint is not to
be directly compared to incompressibility of the bulk fluids because only one mode of
monolayer density relaxation ψΣ

lm can be eliminated by invoking it (ψ	
lm remains). This

added constraint will be treated as an extra equation in the system which will have
to be explicitly enforced. In order to incorporate the constraint (3.7), we introduce an
unknown variable membrane tension in the formulation of the problem (see (2.3)),

σ (θ, φ, t) = σ0 +
∑
l,m

σlm(t)Ylm(θ, φ). (3.8)

The global expression for constraint total number of lipids on each monolayer surface
leads to,

d

dt

∫
Ω

(1 + φ±)
R2

er · n
dΩ = 0, (3.9)

where R2/er · n is the Jacobian of the transformation from the nearly spherical shape,
to the spherical shape defined by the sold angle Ω . Following a similar set of
manipulations to that of Vlahovska & Gracia (2007) the integration over the solid
angel becomes at leading order in ε,

d

dt

[∑
l,m

ã(l)flmf ∗
lm + 2

∑
l,m

flmψ
∗±
lm + 4πψ

±
00

]
= 0 (3.10)

with ã(l) = (l + 2)(l − 1)/2, and ψ
±
lm are the amplitudes of modes in the spherical

harmonics expansion for the lipid density fields φ±. Note that ψ
	/Σ
lm = (ψ+

lm ∓ ψ−
lm)/2.

Taking the average of the two equations above (one corresponding to the outer
monolayer ‘+’ and the other to the inner monolayer ‘−’), using the fact that ψ̇Σ

lm =0
for all l and m and assuming an initial condition of ψΣ

lm(0) = 0 we arrive at∑
l,m

ã(l)ḟlmf ∗
lm = 0 , (3.11)

where the superscript ∗ denotes complex conjugate and dot is a time derivative.
Analogous relation was derived in the minimal model theories from the area constraint
(Milner & Safran 1987; Vlahovska & Gracia 2007).

Taking the difference of the ‘+’ and the ‘−’ equations in (3.10) leads to an expression,
from which ψ	

00 can be determined in terms of flm and ψ	
lm.



410 J. T. Schwalbe, P. M. Vlahovska and M. J. Miksis

3.2. Evolution equations in a general flow

Detailed in the Appendices are the calculations leading to the shape and density
evolution equations. The nonuniform component of the tension is eliminated from
the problem by use of tangential stress balance (A 2). The field ψΣ

lm is determined up
to a constant by (3.7) leaving the following two equations of motion for the remaining
two unknown perturbation fields, flm(t) and ψ	

lm(t),

Γ (η, l)
dflm

dt
+ J (η, l)

dψ	
lm

dt
= Ca−1

[
l(l + 1)Ẽlflm

+ l(l + 1)a(l)σ0flm − D(l)ψ	
lm

]
+ C(l, m) (3.12)

and

Γ̂ (η, l)
dflm

dt
+ Ĵ (η, l)

dψ	
lm

dt
= Ca−1

[
D(l)flm − 2αl(l + 1)ψ	

lm

− 2φΔ
0 αl(l + 1)ψΣ

lm

]
+ Ĉ(l, m). (3.13)

Explicit expressions for coefficients are listed in Appendix C. Present in the first of
the above two equations of motion is the quantity σ0, the isotropic component of the
membrane tension. It depends on the instantaneous shape and lipid distribution (see
(C 9)), and thus makes this system nonlinear to leading order as opposed to capsules
and drops (Barthes-Biesel & Rallison 1981; Barthes-Biesel 1991; Pozrikidis 2003). The
coefficients, which are dependent on the viscosity contrast, yield combinations which
are bounded as η → ∞. The last term in each of the above equations describes the
distortion of the vesicle by the imposed flow. All terms multiplied by Ca−1 represent
relaxation driven by membrane elastic stresses.

3.3. Simple shear flow

Simple shear flow can be decomposed into rotation and extension. The extensional
part of the flow deforms the vesicle; its action is described by the inhomogeneous
terms in (3.12) and (3.13)

C(2, ±2) = δ2
l δ

±2
m

(
±84i

15

√
30π

)
(3.14)

and

Ĉ(2, ±2) = δ2
l δ

±2
m

(
±12i

5

√
30π

)
. (3.15)

Therefore, only l = 2 (ellipsodial) shape and density modes are excited at leading order
(Vlahovska & Gracia 2007) (see Appendix A.2). Since the vesicle shape is initially
non-spherical, the rotational flow component affects the leading order evolution
equations. The kinematic condition is Ṙ = v · êr − v · ∇R. The extensional component
of the applied flow is exactly balanced by the extensional component of the flow
perturbation due to the vesicle because the surface flow is area incompressible at
leading order (Seifert 1999). Hence,

v∞
rot · ∇R = −iω

m

2
flm. (3.16)

This can also be interpreted as a rotation of the coordinate system where ω is
the magnitude of the rotational component of the flow field. For simple shear flow
ω = 1. This term is combined with the regular time derivative to form the Jaumann
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derivative, d/dt = ∂/∂t − iω(m/2), which at this order fully accounts for the rotational
component of the flow (see e.g. Danker et al. 2007).

Finally, the evolution equations in shear flow take the form,

Γ (η, 2)ḟ2m + J (η, 2)ψ̇	
2m =

im

2

[
Γ (η, 2)f2m + J (η, 2)ψ	

2m

]
+ C(2, m) + 2	−1

×
(
C(2, 2) − JĈ(2, 2)

)
(f22 − f2−2)f2m + 24−1

×
(
J(η, 2)f2m − ψ	

2m

)
+ 24Ca−1	−1(2Λ − αJ)

×
(
ψ	

2−2f22 + ψ	
20f20 + ψ	

22f2−2

)
f2m (3.17)

and

Γ̂ (η, 2)ḟ2m + Ĵ (η, 2)ψ̇	
2m =

im

2

[
Γ̂ (η, 2)f2m + Ĵ (η, 2)ψ	

2m

]
+ Ĉ(2, m)

+ 12Ca−1
[
2Λf2m − α

(
ψ	

2m + φΔ
0 ψΣ

2m

)]
, (3.18)

where m = −2, 2, 0. Since ψΣ
2m is a constant, without loss of generality, it can be set to

zero and therefore terms ψΣ
2mf 2

2m have been omitted in (3.17). The constant quantity

	 =
∑
l,m

ã(l)flmf ∗
lm (3.19)

defines the excess area as in the minimal model theories.

4. Results
The system of differential equations (3.17) and (3.18) is solved numerically

using Matlab’s ODE45 routine. For convenience, results for the real and complex
components of the amplitudes are given,

f2m = f ′
2m + if ′′

2m , ψ	
2m = ψ ′	

2m + iψ ′′	
2m . (4.1)

f ′
22, f ′′

22 and f20 specify deformations along the flow direction (x1), the extensional axis
(x1 = x2), and the vorticity direction (x3). It should be noted that f ∗

2m = (−1)mf2−m and
ψ	∗

2m =ψ	
2−m where ∗ denotes the complex conjugate. Vesicle orientation with respect

to the flow direction is characterized by the inclination angle

ϕ0 = −1

2
arctan

f ′′
22

f ′
22

. (4.2)

The numerical solutions of (3.17) and (3.18) reveal dynamics for the shape which is
consistent with earlier theoretical work based on the minimal model (Misbah 2006;
Vlahovska & Gracia 2007; Lebedev et al. 2008). Figure 2 illustrates vesicle shapes
and time-dependent behaviour at various values of the viscosity ratio. Figure 3(a).
shows the time dependence of each shape mode, and that at low viscosity ratio,
η =1, the vesicle shape and orientation approach a steady state with an inclination
angle of ϕ0 ≈ π/4. This behaviour corresponds to the tank treading dynamics seen
in the experimental work of Mader et al. (2006). In the final configuration, only the
f2±2 modes are nonzero which is also consistent with previous results (Vlahovska &
Gracia 2007). At higher viscosity ratios, η =10, the vesicle exhibits a tumbling motion
characterized by a periodic oscillation in the shape modes, as illustrated in figure 3(b).
In this leading order theory, the vacillating-breathing mode (Misbah 2006) is part
of the tumbling solution and corresponds to time-dependent deformation along the
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Figure 2. Contours of the vesicle shape as viewed from the vorticity axis for three different
viscosity ratios. The image in the dotted box shows the long-time tank treading behaviour. The
solid and dashed boxes show the vesicle behaviour at various times for the breathing (η = 7)
and tumbling (η = 100) regimes, respectively. The times indicate when the snapshot was taken.
All other parameters and initial conditions are the same as those in figure 3.
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Figure 3. Time dependence of f2m modes for (a) tank treading regime (η = 1) with the
evolution of the inclination angle shown in the inset and (b) tumbling regime (η = 10).
Both solutions are with Ca = 1.0 × 104, β =1.33 × 1010, Λ= 1.33 × 104, α = 1.33 × 108 and
φΔ

0 = 4 × 10−4. The solid, dashed and dotted lines represent the f ′′
22, f ′

22 and f20 modes,

respectively. The initial conditions for the f2±2 are f ′
22(0) = f ′′

22(0) =
√

0.1	. The f20 mode is
determined from(3.19) with 	= 0.2. Initial conditions for the density profiles are chosen as
equilibrium configurations.

vorticity axis. In figure 3(b) the f20 mode is oscillating, which is a characteristic of the
vacillating-breathing mode. Increasing the viscosity contrast damps this oscillation
and in this case the vesicle executes pure tumbling motion.

Unlike earlier work, our theory gives insight into the dynamics of the lipids in
the bilayer. Figure 4(a) shows that the lipids do indeed undergo an oscillatory (tank
treading) motion even though the shape is constant. The density is oscillatory also
in the tumbling regime, as seen in figures 4(b) and 4(c). Interestingly, at intermediate
viscosity ratios η =10, subharmonic oscillations are observed (see figure 4b), which
disappear at high viscosity ratios. For η = 1000 the vesicle behaves as a tumbling
rigid ellipsoid. Finally, the out-of-shear-plane mode ψ	

20 oscillates with an increasing
amplitude as the viscosity increases from η = 1 to η = 1000.

Next we examine the effect of bilayer slip, which is equivalent to a difference
in the fluid velocity on either side of the bilayer. Its reported values vary over a
fairly wide range. Molecular dynamics simulations (den Otter & Shkulipa 2007)
give b as (2.4 − 7.3) × 106 Pa m−1s which correspond to dimensionless β values of
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2m modes for viscosity ratios (a) η = 1, (b) η = 10 and (c)

η = 1000. Other parameters are the same as in figure 3. The solid, dashed and dotted lines
represent the ψ ′′	

22 , ψ ′	
22 and ψ	

20 modes, respectively. All other parameters are the same as

those in figure 2 and ψ	
2m is rescaled by φ	

0 = 4 × 10−4.

(0.13 − 0.39) × 107. Experimental measurements yielded β values (1.6 − 160) × 107

(Merkel et al. 1989) or (2.6 − 530) × 108 (Raphael & Waugh 1996). Figure 5 shows
the long time dynamics of the density difference fields for two different values of
the slip coefficient. In figure 5(b), for the lower value of β (1.33 × 104) one can see
that the lipid density difference dynamics approach a constant value similar to that
of shape modes in the tank treading regime. Small β means that the monolayers
more easily slip past one another which may lead to more interesting dynamics. In
figure 5(a) one can see a separation in the amplitudes of the ψ ′′	

22 and ψ ′	
22 modes as

well as a secondary oscillation which occurs on a longer time scale. At high β , the
monolayers move in tandem and the dynamics approaches the behaviour predicted
by the minimal model.

In figure 6(a) the magnitude of the dimensionless slip velocity is shown for various
values of β . One can see that as β decreases the magnitude of the velocity increases
indicating that the monolayers can slide past one another with increasing ease. The



414 J. T. Schwalbe, P. M. Vlahovska and M. J. Miksis

0.04 1500

1000

500

0

–500

–1000

–1500

–2000

–2500

0.02

0

–0.02

–0.04

–0.06

–0.08

ψΔ
2m

100 20 4030 50 7060 80

t
50 10 2015 25 3530 40

t

(a) (b)

Figure 5. Time dependence of ψ	
2m modes for (a) β = 1.33 × 108 and (b) β = 1.33 × 104 both

solutions are with η = 10 and all other parameters the same as in figure 2. The solid, dashed
and dotted lines represent the ψ ′′	

22 , ψ ′	
22 and ψ	

20 modes, respectively, and ψ	
2m is rescaled by

φ	
0 = 4 × 10−4.

(a)

|vslip|

(b)
6000

4000

2000

0

–3 –2 –1 0 1 2 3

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

Tank treading

Tumbing

105100 1010 1015

η

β

–2000

–4000

–6000

Figure 6. (a) The slip velocity as a function of angular position along the vesicle contour in
the shear plane; the vesicle is in the tank treading regime (η = 1). The solid, dotted, dashed
and dash-dotted lines correspond to β values of 1010, 106, 104 and 102, respectively. All other
parameters are the same as those in figure 3. (b) A phase diagram showing the critical viscosity
contrast ηc , where the tank treading to tumbling bifurcation occurs for various values of β .
All other parameters are the same as those in figure 3.

slip velocity is taken as positive if its component in the direction of the shearing flow
is positive. Figure 6(a) implies that in some locations the slip velocity is pointed in
the opposite direction of the shear flow.

The bilayer slip changes the critical viscosity contrast, ηc, where the tank-treading
to tumbling transition occurs. A phase diagram for the parameters β and η is shown
in figure 6 where the β axis is on a logarithmic scale. As the friction coefficient
increases, the monolayer sheets encounter more resistance as they move relative to
each other, and therefore behave as one entity. The plateau in figure 6(b) at large
values of β shows a value of ηc =6.87 which is close to that found by the minimal
model theories (Misbah 2006; Vlahovska & Gracia 2007) for 	 ≈ 0.2 (ηc = 7.16).
In addition to the variation in the critical viscosity, as β decreases from 1010 to 103
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the period of oscillation in the shape modes increases from 7.28 to 11.3 units of
dimensionless time, respectively. Smaller values of β were not examined because they
are too far outside of the physical regime, where the Stokes’ approximation is valid.

Finally it should be noted that equilibrium shapes and density profiles can be
determined from (3.17) and (3.18) by setting the time derivatives on the left-hand side
of the equations to zero and then solving the resulting system numerically for the
unknowns. These solutions, and a linear analysis about these equilibrium solutions,
can be shown to be consistent with the nonlinear dynamics found here as a function
of η. For example, our numerical results show that in the tank treading regime
(η = 1) equilibrium solutions can be found which correspond to the shapes predicted
in figure 3(a), and the average value of the oscillatory density seen in figure 4(a),
while in the tumbling regime (η = 100), the equilibrium solutions were found to be
the average of the oscillations of both the shape and density modes.

5. Conclusions
This study considers the dynamics of a vesicle formed by a fluid phospholipid

bilayer membrane in a viscous flow. We have adopted a general model for the
membrane which accounts for the bilayer architecture and allows the two constituent
monolayers to slide past one another. In addition to this, bilayer bending resistance,
monolayer compressibility, viscosity of the surrounding fluids and the fixed number of
lipid molecules per monolayer are taken into account. The limit of a nearly spherical
vesicle is examined and analytical results are obtained for the shape and density
evolution, velocity fields and effective isotropic membrane tension. The resulting
evolution equations (3.17) and (3.18) are nonlinear.

Numerical integration of the evolution equations yielded similar dynamics for the
shape as seen in earlier work based on the minimal model (Misbah 2006; Vlahovska
& Gracia 2007), namely a transition from a tank treading state to a tumbling state.
Our work allows for a first time to examine two phenomena: firstly, the evolution
of the lipid density fields on the monolayers, and secondly, the slipping of the
monolayers relative to one another. Novel features are observed, e.g. as the viscosity
ratio increases, subharmonic oscillations appear in the evolution of the density fields
which damp out as the η → ∞. The bilayer slip is an additional parameter which
modifies the critical viscosity where the tank treading to tumbling transition occurs.

Equations (3.12) and (3.13) are valid for external flow fields for arbitrary geometry
and therefore can be used to describe the dynamics of a lipid bilayer vesicle in
Poiseuille flow. This work can be used as a foundation to study other phenomena
which require knowledge of the density fields such as pore formation.

This paper is dedicated to Professor Stephen H. Davis on the occasion of his 70th
birthday. J. T. S. and M. J. M. were supported in part by NSF RTG grant no.
DMS-0636574 and NSF grant no. DMS-0616468. P. M. V. acknowledges financial
support by NSF CAREER award CBET-0846247.

Appendix A. Stress balance
The inner and outer components of the tangential forces in (2.5) can be summed

to give (
t+
rs,t + t−

rs,t

)
+

(
t+
hd ,t + t−

hd ,t

)
= 0, (A 1)
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and subtracted to give(
t+
rs,t − t−

rs,t

)
+

(
t+
hd,t − t−

hd,t

)
− 2b

(
v+

s − v−
s

)
= 0. (A 2)

The jump in the normal stress is balanced by the membrane forces,(
t+
rs + t−

rs

)
· n +

(
t+
hd + t−

hd

)
· n = 0. (A 3)

A.1. Linearization of membrane forces

For small perturbations from sphericity, the mean and Gaussian curvatures can
be expressed as sums of scalar spherical harmonics, H = −1 − 1/2

∑
l,m(l + 2)(l −

1)flmYlm, and K = 1+
∑

l,m(l +2)(l −1)flmYlm. Note that here and below we suppress
the linearization parameter ε from the equations. The surface gradient operator is
evaluated on a sphere,

∇s = eθ

∂

∂θ
+ eφ

1

sin θ

∂

∂φ
, (A 4)

and the Laplace–Beltrami operator becomes 	= ∇s · ∇s = −L̂2 which at leading order
is the angular component of the Laplacian in spherical coordinates,

−L̂2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
. (A 5)

The spherical harmonics satisfy the eigenvalue relationship, L̂2Ylm = l(l + 1)Ylm.
Insertion of these expressions in (2.6), gives the leading order normal component

of the membrane elastic force,(
t+
rs + t−

rs

)
· er = −2τ̃ −

∑
l,m

[
Elflm − 4αψΣ

lm −
[
4αφΔ

0 + Λ(l + 2)(l − 1)
]
ψ	

lm − 2σlm

]
Ylm,

(A 6)

where El = (l+2)(l −1)
[
l(l + 1) + τ0

S
]
, τ0 = τ̃ +ΛφΔ

0 and lastly, τ̃ = σ0 +ΛφΔ
0 −α(φΔ

0 )2.
In place of the θ and φ components of the tangential traction, it is more convenient

to use the surface divergence and surface curl. Taking divergence of (A 1) and (A 2)
leads to

∇s ·
(

t+
rs,t − t−

rs,t

)
=

∑
l,m

l(l + 1)
[
2αψ	

lm − Λ(l + 2)(l − 1)flm + 2αφΔ
0 ψΣ

lm

]
Ylm, (A 7)

∇s ·
(

t+
rs,t + t−

rs,t

)
=

∑
l,m

l(l + 1)
[
σlm + 2αψΣ

lm − ΛφΔ
0 (l + 2)(l − 1)flm + 2αφΔ

0 ψ	
lm

]
Ylm.

(A 8)

The surface curl component is identically zero.

A.2. Bulk hydrodynamics

Here we list the hydrodynamic tractions corresponding to the classical Lamb solution
to the Stokes’ equations around a sphere. More details can be found in Seifert (1999).
The interior velocity is expressed as an infinite sum of growing harmonics

vin(r) =
∑
l�2

(
∇

l∑
m=−l

(
Φ in

lmYlmrl
)

+ M(l)r2∇
l∑

m=−l

(
pin

lmYlmrl
)

− N(l)r
l∑

m=−l

(
pin

lmYlmrl
))

.

(A 9)
The expansion coefficients, Φ in

lm and pin
lm are linear combinations of scalar fields

X(a) = v± · er , Y (a) = −∇s · v± and Z(a) = er · (∇s × v±) where each of these is expanded
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in scalar harmonics X
(a)
lm , Y

(a)
lm and Z

(a)
lm , respectively. The quantities M(l) and N(l) are

rational functions of the harmonic mode l and given in Happel & Brenner (1983) as

M(l) =
l + 3

2η(l + 1)(2l + 3)
, N(l) =

l

η(l + 1)(2l + 3)
. (A 10)

The exterior velocity field is obtained by making the substitution, l → −l − 1, which
leads to a sum of harmonics decaying with distance, and making η = 1.

The extensional component of the imposed shear flow is linear with the distance
and therefore it is specified by growing harmonics of order l = 2 and amplitudes
X∞

2±2 = Y ∞
2±2 = ∓ i

√
2π/15.

The normal component of the hydrodynamic tractions is

tout
hd ,r = −

∑
l,m

[
aout

l Xout
lm + bout

l Y out
lm + ain

l X∞
lm + bin

l Y ∞
lm

]
Ylm, (A 11)

t in
hd ,r = −

∑
l,m

[
ain

l Xin
lm + bin

l Y in
lm

]
Ylm. (A 12)

The components tangential to a sphere, once an extra surface gradient is taken are,

tout
hd ,t =

∑
l,m

[
cout
l Xout

lm + dout
l Y out

lm + cin
l X∞

lm + d in
l Y ∞

lm

]
Ylm, (A 13)

t in
hd ,t =

∑
l,m

[
cin
l Xin

lm + d in
l Y in

lm

]
Ylm. (A 14)

Since a rotational type flow Zlm can not be excited by elastic membrane stresses
(recall that the surface curl of the membrane tractions vanishes), the second
tangential component of the tractions is not relevant to this study. In shear flow,
it is automatically satisfied by rigid body rotation. Expressions for the l-dependent
coefficients in equations (A 11)–(A 14) can be found in Miao et al. (2002).

Appendix B. Evolution equations for shape and lipids
The kinematic equations and the continuity of lipids equations existing on both

monolayer surfaces provide the link between the Lamb velocity, X
(a)
lm and Y

(a)
lm , and

the amplitudes of the perturbation fields. To leading order in ε, (2.4) reads as,

∇s · v±
s = −dφ±

dt
− 2

dflm

dt
. (B 1)

Kinematic matching of the surface velocity to the adjacent bulk fluid yields, to order
ε, the evolution equation for the shape

dflm

dt
= Xout

lm = Xin
lm (B 2)

and the lipid densities

dψ+
lm

dt
= Y out

lm ,
dψ−

lm

dt
= Y in

lm , (B 3)

where Xlm are amplitudes of the radial Lamb velocity field and Ylm are amplitudes of
the velocity field tangential to a sphere.
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Appendix C. Coefficients and membrane tension
After some tedious algebra, we derive the coefficients in (3.12)

Γ (η, l) = −(1 + η)(2l3 + 3l2) − 4η + 5, (C 1)

a(l) = (l + 2)(l − 1), (C 2)

J (η, l) =
[
(2 + l)(1 − η) − 3

]
, (C 3)

C(l, ±l) = ±l(l + 1)
[(

2cin
l − ain

l

)
X∞

lm +
(
2d in

l − bin
l

)
Y ∞

lm

]
, (C 4)

D(l) = Λl(l + 1)a(l). (C 5)

The coefficients in (3.13) are

Γ̂ (η, l) = (η − 1)l + 2η + 1, (C 6)

Ĉ(l, ±l) = ±l(l + 1)
(
cin
l X∞

lm + d in
l Y ∞

lm

)
, (C 7)

Ĵ (η, l) = (2l + 1)(1 + η) + 2χ−1β. (C 8)

The isotropic tension σ0 is obtained from (3.11) in conjunction with equations (3.12)
and (3.13). Equation (3.12) is solved for ḟlm and the result is multiplied by ã(l)f ∗

lm.
Summing over all modes and enforcing (3.11) leads to an equation for σ0 which yields

σ0 = −
∑

l,m Γ −1ã(l)
[
−Jf ∗

lmψ̇	
lm + Cf ∗

lm + χ−1l(l + 1)Ẽlflmf ∗
lm − χ−1Df ∗

lmψ	
lm

]
χ−1

∑
l,m Γ −1l(l + 1)ã(l)a(l)flmf ∗

lm

. (C 9)

Thus the isotropic tension couples all modes. Inserting the above expression in (3.12)
leads to the nonlinear shape evolution (3.17).
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